Equations for Primary FRCA

Pharmacology

C: concentration
t: time

Bioavailability

\[
\text{Bioavailability} = \frac{AUC_{ORAL}}{AUC_{IV}}
\]

AUC: area under concentration – time curve

Exponential Function

\[
\frac{dC}{dt} \propto C \quad \text{or} \quad \frac{dC}{dt} = K.C
\]

\[
e = 2.718 \quad \text{or} \quad \frac{1}{e} = 0.37
\]

\[
C = C_0.e^{-Kt}
\]

(for a negative exponential relationship)
C_0 is the concentration at t = 0
K: rate constant

Pharmacodynamics

D: free drug
R: unoccupied receptors
DR: drug occupied receptors
K_D: dissociation constant

\[
K_D = \frac{[D][R]}{[DR]}
\]

\[
\text{affinity} = \frac{1}{K_D}
\]

Enzyme Kinetics
\[V = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

V: initial velocity
\(V_{\text{max}} \): maximum initial velocity
\(K_m \): concentration at which the initial velocity is half the maximal initial velocity
S: substrate

Pharmacokinetics

Cl: clearance
\(V_d \): volume of distribution
\(\tau \): time constant
K: rate constant
D: dose

\[V_d = \frac{D}{C_0} \]

\[\tau = \frac{1}{K_{el}} \]

\[\tau = \frac{V_d}{Cl} \]

\[t_\frac{1}{2} = \tau \log_2 2 \]

Loading dose = \(V_d.C_p \)
Maintenance dose = \(C_p.Cl \)

Three Compartment Model

\[C_p = A.e^{-\alpha t} + G.e^{-\gamma t} + B.e^{-\beta t} \]

A/\(\alpha \) B/\(\beta \) G/\(\gamma \): kinetic constants

Physics and Measurement: Pressure & Fluids

Pressure
Pressure \(= \frac{force}{area}\)

Absolute pressure = gauge pressure + atmospheric pressure

Fluids

Q: flow
d: tube diameter
P: pressure
\(\eta\): viscosity
l: length of tube
v: fluid velocity
p: density

Laminar flow. Hagen-Poiseuille Equation

\[
Q = \frac{\pi P d^4}{128 \eta l}
\]

Reynolds Number

\[
Re = \frac{v p d}{\eta}
\]

Turbulent Flow

\[
Q \propto \sqrt{P}
\]

\[
Q \propto 1 \sqrt{l}
\]

\[
Q \propto 1 \sqrt{P}
\]

Bernoulli’s Equation

\[
\frac{1}{2} p v^2 + P = K
\]

P: potential energy

Physics and Measurement: Gas Laws
P: pressure V: volume T: temperature K: constant

Boyle’s Law: \(PV = K \)

Charles’ Law: \(\frac{V}{T} = K \)

3rd Law: \(\frac{P}{T} = K \)

\[
\frac{PV}{T} = K
\]
\[
PV = nRT
\]

n: number of moles
R: universal gas constant

Physics and Measurement: Electricity

V: potential difference (volts)
I: current (amps)
R: resistance (ohms)

\[V = IR \]

Power

Power (watts) = \(VI = I^2 R \)

Charge

\[Q = \text{amperes}(A) \times \text{seconds}(s) \]

Q: charge (coulombs)

Capacitance

\[C = \frac{Q}{V} \]

C: capacitance (farads)

Defibrillator
\[\text{Stored Energy} = \frac{1}{2} CV^2 = \frac{1}{2} QV \]

Resistors

Parallel: \[\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} \ldots \]

Series: \[R_T = R_1 + R_2 \ldots \]

\[\frac{R_1}{R_2} = \frac{R_3}{R_4} \]

Physics and Measurement: Other

Tension

T: tension
R: radius
P: pressure gradient

Tube: \[P = \frac{T}{r} \]

Sphere: \[P = \frac{2T}{r} \]

Work

Work done = force \(\times \) distance

Unit of work = Nm

Humidity

Relative humidity \(= \) \[\frac{\text{actual vapour pressure}}{\text{saturated vapour pressure}} \]

Linear Function

\[y = Mx + C \]

M: gradient of a straight line
C: y axis intercept
Light

Lambert-Bouguer law

\[I = I_0 e^{-ad} \]

\(I \): transmitted light
\(I_0 \): incident light
\(a \): extinction coefficient for the solution
\(d \): thickness

Lambert-Beer law

\[\text{Absorbance} = \xi cd \]

\(\xi \): molar extinction coefficient
\(c \): molar concentration
\(d \): thickness

Physics and Measurement: Statistics

\[\text{Variance} = SD^2 = \frac{\sum (x - \bar{x})^2}{n-1} \]

\[\text{Standard Error of the Mean} = \frac{SD}{\sqrt{n-1}} \]

SD: standard deviation

Physiology: cellular

Diffusion

\[Q = k_p \cdot \frac{A}{T} \cdot (C_1 - C_2) \]

\(Q \): rate of diffusion
\(k_p \): permeability constant
\(\propto \) permeability \(\propto \frac{\text{solubility}}{\sqrt{MW}} \)
\(A \): area of membrane
\(T \): thickness of membrane
C₁ – C₂: concentration gradient

Total Blood Volume \((V_{BL})\)

\[
\frac{V_{PL} \times 100}{(100 - Hct)}
\]

\(V_{PL}: \) volume plasma
\(Hct: \) haematocrit

Measurement of Fluid Compartments

\[
\text{volume of compartment} = \frac{\text{mass of indicator}}{\text{concentration in compartment}}
\]

Osmotic Pressure (van’t Hoff equation)

\[
\pi = RTC
\]

\(\pi: \) osmotic pressure
\(R: \) universal gas constant
\(T: \) absolute temperature
\(C: \) osmolality (mosm/kg H₂O)

Plasma Osmolality

\[
\text{Plasma Osmolality (mosm/kg H₂O)} = 2 \times [\text{Na}] + [\text{glucose}] + [\text{urea}]
\]

Gibbs-Donnan

\[
[cation]_A \times [anion]_A = [cation]_B \times [anion]_B
\]

Nernst Equation

For example, sodium:

\[
capillary \ wall \ potential (mV) = \frac{RT}{FZ_{Na}} \times \log_e \frac{[Na]_{int}}{[Na]_C}
\]

\(R: \) universal gas constant
\(T: \) absolute temperature
\(F: \) Faraday constant
\(Z: \) valency
\(Int: \) interstitial
\(c: \) capillary

Starling Forces
Pressure Gradient = \((P_c + \pi_{\text{int}}) - (P_{\text{int}} + \pi_c)\)
Rate of Filtration = \(K \cdot (P_c + \pi_{\text{int}}) - (P_{\text{int}} + \pi_c)\)

\(\pi\): colloid osmotic pressure
\(P\): hydrostatic pressure
\(\text{Int}\): interstitial
c: capillary

Physiology: Cardiac

SV: stroke volume
CO: cardiac output
SVR: systemic vascular resistance (dynes.s/cm\(^5\))
BP: blood pressure (mmHg)
MAP: mean arterial blood pressure
HR: heart rate
CVP: central venous pressure (mmHg)

Stroke Volume

\[SV = EDV - ESV\]

\[Ejection\; Fraction = \frac{SV}{EDV}\]

EDV: end diastolic volume
ESV: end systolic volume

Cardiac Output

\[CO = HR \times SV\]

\[Cardiac\; Index = \frac{CO}{BSA}\]

BSA: body surface area

Systemic Vascular Resistance

\[SVR = \frac{MAP - CVP}{CO} \times 80\]

Mean Arterial Blood Pressure

\[MAP - CVP = CO \times SVR\]
QT interval corrected (QTc)

\[QT_c = \frac{QT}{\sqrt{R-R}} \]

R-R: interval between two consecutive R waves

Fick Method

\[CO = \frac{\dot{V}O_2}{(CaO_2 - CvO_2)} \]

VO₂: oxygen uptake
CaO₂: oxygen content of arterial blood
CvO₂: oxygen content of venous blood

Physiology: Respiratory

\[\cdot V \]
Vol: volume of gas per unit time
V: volume of gas
D: dead space
C: content
P: pressure or partial pressure

Ventilation

\[V_T = V_A + V_D \]

\[\cdot V_A = \frac{\dot{V}CO_2}{PACO_2} \times K \]

Bohr equation

\[\frac{V_D}{V_T} = \frac{PACO_2 - PECO_2}{PACO_2} \]

(for physiological dead space)

Alveolar Gas Equation

\[PAO_2 = PIO_2 - \frac{PACO_2}{R} \]
R: respiratory quotient $\Rightarrow R = \frac{\dot{V}CO_2}{\dot{V}O_2}$

Venous to Arterial Shunt

$$\frac{\dot{Q}_S}{\dot{Q}_T} = \frac{C_{co_2} - C_{ao_2}}{C_{co_2} - C_{vo_2}}$$

Q: volume of blood per unit time
S: shunt
T: total c: end capillary

Compliance

$$\text{compliance} = \frac{\Delta V}{\Delta P}$$

$$\frac{1}{C_R} = \frac{1}{C_L} + \frac{1}{C_W}$$

C_R: respiratory system compliance
C_L: lung compliance
C_W: wall compliance

Oxygen Content

$$\text{Content (ml O}_2/\text{g Hb)} = (1.39 \times [\text{Hb}] \times \frac{\% \text{sat}}{100}) + (0.023 \times \text{Po}_2)$$

Po_2: partial pressure in kPa

Physiology: Other

Clearance

$$C_x = \frac{U_xV}{P_x}$$

C_x: clearance of x (ml/min)
U_x: urine concentration of x
P_x: plasma concentration of x
V: urine flow (ml/min)

pK
\[pK = -\log K \]
\[k = \frac{[H^+][A^-]}{[HA]} \]

Henderson-Hasselbach

\[\text{pH} = pK + \log \frac{\text{conjugate base}}{\text{acid}} \]
\[\text{pH} = pK + \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]
\[\text{pH} = pK + \log \frac{[\text{HCO}_3^-]}{0.23 \times P_{\text{CO}_2}} \]

Cerebral Perfusion Pressure

\[\text{CPP} = \text{MAP} - (\text{ICP} + \text{CVP}) \]