The Physics of Flow

Paul Clements, SpR in Anaesthetics, Hope Hospital, Salford, UK.
Carl Gwinnutt, Consultant Anaesthetist, Hope Hospital, Salford, UK.

Introduction

Flow is defined as the quantity of fluid (gas, liquid or vapour) that passes a point per unit time. A simple equation to represent this is

\[
\text{Flow (F)} = \frac{\text{Quantity (Q)}}{\text{Time (t)}}
\]

Flow is sometimes written as \(\Delta Q\) (rate of change of mass or volume).

Due to the number of different fluids that are given to our patients during a routine anaesthetic, flow is obviously an important area of physics to understand.

Questions

<table>
<thead>
<tr>
<th>Why are the scales on rotameters (flowmeters) variable in their heights?</th>
<th>Under what circumstances is the gas above useful and why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why are there different rotameters for different gases?</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Rotameters

Fig 2. Heliox (helium and oxygen) cylinder
How much more fluid can be administered through a 14G cannula than a 22G cannula?

Will it make much of a difference ventilating through a size 4 ETT rather than a size 9 ETT?

In order to answer these questions we need to understand the physical principles that govern flow.

The physics of flow
Flow can be divided into 2 different types, laminar and turbulent. A number of different physical characteristics determine whether a fluid obeys the principles of one or the other.

Laminar Flow
In laminar flow the molecules of the fluid can be imagined to be moving in numerous ‘layers’ or laminae as shown below.
Although all the molecules are moving in straight lines they are not all uniform in their velocity. If the mean velocity of the flow is v, then the molecules at the centre of the tube are moving at approximately $2v$ (twice the mean), whilst the molecules at the side of the tube are almost stationary. To help to understand this consider what happens when walking across a small river or stream; at the edge of the water by the river bank it does not feel like there is much movement of the water, whereas once you reach the middle the water is moving a lot faster. This is represented by the different lengths of the lines in the diagram.

Flow is usually considered to be laminar when a fluid flows through a tube and the rate of flow is low. This is therefore the type of flow we would expect to see when a fluid flows through a cannula or a tracheal tube.

For flow to occur, there must be a pressure difference (ΔP) between the ends of a tube, and it can be demonstrated that ΔQ is directly proportional to ΔP, in other words the greater the pressure difference, the greater the flow. (We squeeze a bag of IV fluid, to increase the pressure difference between the bag and the vein, so that the fluid is given quicker!).

As fluid flows through tubes there is resistance, between the fluid and vessel wall that opposes the flow. For any given system, this resistance is constant and can be expressed as:

$$\text{Resistance} = \frac{\Delta P}{\Delta Q} = R \text{ (constant)}$$

(This can be compared with $V=IR$ in electrical physics)

Flow is affected by a number of other physical characteristics:

Tube diameter If the diameter of the tube is halved the flow through it reduces to one-sixteenth. This means that flow is directly proportional to d^4. (Think about how much more rapidly fluid flows through a 22G and 16G cannula).

Length If the length is doubled the flow is halved, therefore flow is inversely proportional to the length of the tube. (A central line is much longer than a cannula, and for the same diameter fluid flows more slowly. This demonstrates why a cannula is far better for giving fluid rapidly).

Viscosity This fluid is a measure of the frictional forces within the ‘layers’ described above. (Almost how sticky the fluid is). As the viscosity increases the flow decreases proportionally, therefore flow and viscosity are inversely proportional. Viscosity is represented as μ (Greek letter eta).

The Hagan-Poiseuille equation brings together all of the variables that determine flow along with a constant ($\pi/128$ that is derived theoretically).
\[\Delta Q = \frac{\pi P d^4}{128 \mu l} \]

\(\Delta Q \) - flow

\(P \) - pressure difference

\(d \) - diameter of tube

\(\mu \) - viscosity

\(l \) - length of tube

Turbulent Flow

Not all fluid flow is laminar, but under certain physical conditions it becomes turbulent. When this happens, instead of the fluid moving in seemingly ordered layers, the molecules become more disorganised and begin to swirl with the formation of eddy currents, as shown below.

Fig. 6 Diagrammatic representation of turbulent flow

Now, flow is less ordered and the eddy currents react with each other, increasing drag or resistance to flow. As a result, a greater energy input is required for a given flow rate when flow is turbulent compared to when flow is laminar. This is best demonstrated by the fact that in turbulent flow, the flow rate is proportional to the square root of the pressure gradient, whereas in laminar flow, flow rate is directly proportional to the pressure gradient. This means that to double the flow, the pressure across the tube must be quadrupled.

When does turbulent flow occur?

Turbulent flow occurs when fluids flow at high velocity, in large diameter tubes and when the fluids are relatively dense. Also, decreasing the viscosity of a fluid leads to turbulent flow. The factors that determine when turbulent flow commences can be combined to form an equation which calculates the Reynolds number:

\[\text{Reynolds number} = \frac{v}{\mu} \frac{d}{\mu} \]

\(v \) = velocity

\(\mu \) = density

\(d \) = diameter

\(\mu \) = viscosity

Measurements in tubes have shown that when:

Reynolds number < 2000 there is laminar flow.
Reynolds number 2000-4000 there is transitional flow i.e. a mixture of laminar and turbulent flow
Reynolds number >4000 flow will be turbulent

[Note that Reynolds number does not have any units associated with it, it is called a dimensionless number!].
This equation shows that for a given fluid, in a given tube, once a critical velocity is reached flow will become turbulent. The relevance of this within the body is that whenever a tube divides (e.g. bronchi, blood vessels) or there is a sharp bend or narrowing, velocity of the fluid increases making turbulent flow likely to occur. Blood flow in the carotid artery becomes turbulent as it flows past an atheromatous plaque, hence the bruit heard with a stethoscope.

As we have seen, as the diameter of a tube increases, the Reynolds number increases. Eventually if the diameter of the increases enough, it will exceed the length of the tube. We then call this an orifice (see below). Generally speaking, provided that the critical velocity is not exceeded, flow through a tube is laminar and hence dependent on viscosity, whereas if it is through an orifice it is turbulent and dependent on density.

Fig. 7 Difference between a tube and an orifice

| Tube | Orifice |

Clinical Applications

Flowmeter

The flowmeters that are commonly used on anaesthetic machines are constant pressure, variable orifice flowmeters (tradename "Rotameters").

These are cone shaped tubes that contain a bobbin and are specific for each gas. The gas enters the bottom of the tube applying a force on the bobbin. The bobbin then moves up the tube until the force from below pushing it up is cancelled out by the gravitational force of the bobbin pulling it down. At this point it remains at that level
and there is a constant pressure across the bobbin (pressure is force divided by area, and the area is constant).

At low flows, the bobbin is near the bottom of the tube and the gap between the bobbin and wall of the flowmeter acts like a tube, gas flow is laminar and hence the viscosity of the gas is important.

As flow rate increases, the bobbin rises up the flowmeter and the gap increases until it eventually acts like an orifice. At this point the density of the gas affects its flow.

Fig. 8 Diagrammatic representation of a rotameter

<table>
<thead>
<tr>
<th>Tube Effect</th>
<th>Orifice Effect</th>
</tr>
</thead>
</table>

As flow changes from laminar to turbulent within the flowmeter:
-individual gases have different densities and viscosities and therefore the flow past the bobbin will vary for each individual gas.
-the flow changes from being directly proportional to pressure to proportional to the square root of pressure and hence the graduations on the flowmeters are not uniform.

Heliox

Heliox is a mixture of 21% oxygen and 79% helium. Helium is an inert gas that is much less dense than nitrogen (which makes up 79% of air), therefore making heliox much less dense than air. In patients with upper airway obstruction, flow is through an orifice and hence more likely to be turbulent and dependent on the density of the gas passing through it. Therefore for a given pressure gradient (patient effort), there will be a greater flow of a low density gas (heliox) than a higher density gas (air). Although flow in the lower (smaller diameter) airways is considered to be laminar there may still be small areas of turbulence, giving some benefit, but not as much as that in the upper airways.

It must be noted that although flow with heliox increases in upper airway obstruction, it only contains 21% oxygen it may not be of benefit in the hypoxic patient.

Intravenous fluids
Intravenous fluids flow in a laminar fashion, therefore the rate of flow is determined by the Hagan-Poiseuille formula. This means that for a given fluid, with the same pressure applied to it, flow is greater through a shorter, wider cannula. That’s why they are preferred in resuscitation to central cannulas that are long and small diameter.

To re-iterate, if the diameter of the tube is doubled the flow through it is increased by sixteen times.

Ventilation

The principles here are similar to those with the intravenous cannulae. Flow through a tracheal tube is laminar so the Hagan-Poiseuille formula applies. If a smaller diameter tracheal tube is used, then flow will be significantly reduced as it is proportional to the forth power of the diameter, unless the pressure gradient is increased (changing the tube from an 8mm to a 4mm may reduce flow by up to sixteen-fold!). This may be relatively easy to do with a mechanical ventilator, but if the patient is breathing spontaneously they will need to generate a much greater negative intrathoracic pressure. This will require the patient to work a lot harder and over time they will become exhausted, tidal and minute volume will be reduced and they will become hypercapnic. This is the reason why we don’t allow patients to breathe spontaneously for any length of time through narrow tubes, such as those used for laryngeal surgery.

Also look at the rest of the breathing circuit: acute angles at connections cause turbulent flow, thereby reducing flow for a given driving pressure, and unnecessary long circuits will reduce flow making the work of breathing greater.

Questions

1.) Define flow.
2.) What different types of flow are there and what physical principles govern them?
3.) What is the Hagan-Poiseuille equation and what is the relevance of it?
4.) Please now refer to the clinical questions at the beginning of the tutorial and attempt them.